Telegram Group & Telegram Channel
🚀 Создавайте ML-модели с помощью естественного языка с Plexe

Почему бы не упростить создание моделей машинного обучения?

Plexe — это Python-библиотека, которая позволяет вам описывать задачу на естественном языке. После этого команда интеллектуальных агентов на базе LLM берёт всё в свои руки: от построения архитектуры до обучения и тестирования.

📌 Пример:
import plexe

model = plexe.Model(
intent="Предсказать тональность новостных статей",
input_schema={"headline": str, "content": str},
output_schema={"sentiment": str}
)

model.build(
datasets=[your_dataset],
provider="openai/gpt-4o-mini"
)

prediction = model.predict({
"headline": "Прорыв в области ИИ",
"content": "Учёные достигли впечатляющих результатов..."
})


Основные возможности:
— Описание модели на естественном языке
— Многоагентная система (анализ, генерация кода, тесты)
— Автоматизированное построение моделей в один метод
— Поддержка распределённого обучения (Ray)
— Генерация данных и автоматический вывод схем
— Интеграция с OpenAI, Anthropic, HuggingFace и другими LLM-провайдерами

📦 Установка:
pip install plexe


🔗 Ознакомиться с проектом и примерами: https://clc.to/Fs6A-g

Библиотека дата-сайентиста #буст



tg-me.com/dsproglib/6465
Create:
Last Update:

🚀 Создавайте ML-модели с помощью естественного языка с Plexe

Почему бы не упростить создание моделей машинного обучения?

Plexe — это Python-библиотека, которая позволяет вам описывать задачу на естественном языке. После этого команда интеллектуальных агентов на базе LLM берёт всё в свои руки: от построения архитектуры до обучения и тестирования.

📌 Пример:

import plexe

model = plexe.Model(
intent="Предсказать тональность новостных статей",
input_schema={"headline": str, "content": str},
output_schema={"sentiment": str}
)

model.build(
datasets=[your_dataset],
provider="openai/gpt-4o-mini"
)

prediction = model.predict({
"headline": "Прорыв в области ИИ",
"content": "Учёные достигли впечатляющих результатов..."
})


Основные возможности:
— Описание модели на естественном языке
— Многоагентная система (анализ, генерация кода, тесты)
— Автоматизированное построение моделей в один метод
— Поддержка распределённого обучения (Ray)
— Генерация данных и автоматический вывод схем
— Интеграция с OpenAI, Anthropic, HuggingFace и другими LLM-провайдерами

📦 Установка:
pip install plexe


🔗 Ознакомиться с проектом и примерами: https://clc.to/Fs6A-g

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6465

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from cn


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA